Seventh Semester B.E. Degree Examination, Dec.2013/Jan.2014 Computer Integrated Manufacturing

Time: 3 hrs. Max. Marks: 100 N

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. What is automation? Explain the types of automation.

(10 Marks)

b. A certain part is routed through six machines in a batch production plant. The setup and operation times for each machine are given in the table below.

Machine	Setup time (hrs)	Operation time (mins)
1	4	5.0
2	2	3.5
3	8	10.0
4	3	1.9
5	3	4.1
6	4	2.5

The batch size is 100 and the average non-operation time/machine is 12 hrs. Determine

(i) Manufacturing load time (ii) Production rate for operation 3.

(10 Marks

- 2 a. What is an automated flow line? State its types. Explain the different methods of work part transport. (10 Marks)
 - b. With neat sketches, explain the following:

(i) Rack and pinion mechanism (ii) Genera mechanism.

(10 Marks)

- 3 a. Explain the flow line performance analysis by means of three basic measures average production rate, line efficiency and cost per item produced. (10 Marks)
 - b. An 8 station rotary indexing machine operates with an ideal cycle time of 20 secs. The frequency of line stop occurrences is 0.06 stops/cycle on the average. When a stop occurs, it takes an average of 3 mins to make repairs.

Determine the following:

- (i) Average production time
- (ii) Average production rate
- (iii) Line efficiency

(iv) Proportion of downtime.

(10 Marks)

- 4 a. Mention the steps involved in the following methods of line balancing and explain them, with a simple example:
 - (i) Largest candidate rule (ii) Ranked positional weight method.

(08 Marks)

b. A project has the following tasks. Its immediate predecessor and element times are given below.

Tasks	t _e (mins)	Must be preceded by
1	0.2	-
2	0.4	.=
3	0.7	1
4	0.1	1,2
5	0.3	2
6	0.11	3
7	0.32	3
8	0.6	3,4
9	0.27	6, 7, 8
10	0.38	5, 8
11	0.5	9, 10
12	0.12	11

Cont.- Q4(b).

- 4 b. Using Largest candidate rule method,
 - (i) Construct the precedence diagram.
 - (ii) If the ideal cycle time is 1.0 min, find the minimum number of workstations required to complete the project.
 - (iii)Calculate the balance delay.

(12 Marks)

PART – B

- 5 a. Explain the following with reference to parts feeding devices of automated assembly systems:
 - (i) Hopper (ii) Selector & orientor (iii) Escapement & placement devices. (10 Marks)
 - b. What are automated guided vehicle systems? Explain the types of AGVS. (10 Marks)
- 6 a. Explain with a block diagram, the principal functions in a computerized production planning system. (10 Marks)
 - b. What is material requirement planning? Discuss fundamental concepts in MRP. (10 Marks)
- 7 a. Explain briefly the features of vertical axis machining centre (VMC). Give its applications.
 (10 Marks)
 - b. Write a manual part program for machining the component shown in Fig.Q7(b). Machining involves 3 holes, 15 mm diameter with depth of holes as 20 mm. make suitable assumptions. Also give the meaning of G and M codes used in the program. (10 Marks)

- 8 a. Define Robot. Explain any two configurations of industrial robots using schematic diagrams.

 (10 Marks)
 - b. Explain with sketches any two types of robotic sensors.

(10 Marks)

* * * * *